Axially Forced Vibration Analysis of Cracked a Nanorod

author

  • Şeref Akbaş Civil Engineering, Engineering Fac., Bursa Technical University, Bursa,Turkey
Abstract:

Thisstudy presents axially forced vibration of a cracked nanorod under harmonic external dynamically load. In constitutive equation of problem, the nonlocal elasticity theory is used. The Crack is modelled as an axial spring in the crack section. In the axial spring model, the nonrod separates two sub-nanorods and the flexibility of the axial spring represents the effect of the crack. Boundary condition of the nanorod is selected as fixed-free and a harmonic load is subjected at the free end of the nanorod. Governing equation of the problem is obtained by using equilibrium conditions. In the solution of the governing equation, analytical solution is presented and exact expressions are tained for the forced vibration problem. On the solution method, the separation of variable is implemented and the forced vibration displacements are obtained exactly. In the open literature, the forced vibration analysis of the cracked nanorod has not been investigated broadly. The objective of this study is to fill this blank for cracked nanorods. In numerical results, influences of the crack parameter, position of crack, the nonlocal parameter and dynamic load parameters on forced vibration responses of the cracked nanorod are presented and discussed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Nonlinear vibration analysis of axially moving strings in thermal environment

In this study, nonlinear vibration of axially moving strings in thermal environment is investigated. The vibration haracteristics of the system such as natural frequencies, time domain response and stability states are studied at different temperatures. The velocity of the axial movement is assumed to be constant with minor harmonic variations. It is presumed that the system and the environment...

full text

A Simple Finite Element Procedure for Free Vibration and Buckling Analysis of Cracked Beam-Like Structures

In this study, a novel and very simple finite element procedure is presented for free vibration and buckling analysis of slim beam-like structures damaged by edge cracks. A cracked region of a beam is modeled using a very short element with reduced second moment of area (I). For computing reduced I in a cracked region, the elementary theory of bending of beams and local flexibility approach are...

full text

A New Approach for Buckling and Vibration Analysis of Cracked Column.

In this paper mathematical formulation for buckling analysis of a column and vibrationanalysis of a beam is presented. The beam and the column is assumed to be non-uniform and cracked.Using calculus of variations, the problem is expressed as an optimization problem. A technique ofoptimization is used for analysis of buckling load. Considering the similarity between the governingequation for buc...

full text

Free and Forced Vibration Analysis of Functionally Graded Material Cylinders by a Mesh-Free Method

In this paper, free and forced vibration analysis of functionally graded material cylinders was carried out by mesh-free and finite element method. In this analysis, MLS shape functions are used for approximation of displacement field in the weak form of motion equation and essential boundary conditions are imposed by transformation method. Resulted set of differential equations are solved usin...

full text

Forced-Vibration Analysis of a Coupled System of SLGSs by Visco- Pasternak Medium Subjected to a Moving Nano-particle

In this study, forced-vibration analysis of a coupled system of single layered graphene sheets (SLGSs) subjected to the moving nano-particle is carried out based on nonlocal elasticity theory of orthotropic plate. Two SLGSs are coupled with elastic medium which is simulated by Pasternak and Visco-Pasternak models. Using Hamilton’s principle, governing differential equations of motion are derive...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 50  issue 1

pages  63- 68

publication date 2019-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023